

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Level In Chemistry (WCH05) Paper 01 General Principles of Chemistry II – Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WCH05_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	The only correct answer is D	(1)
	$m{A}$ is not correct because the electrode is wrong and $\mathbf{M}\mathbf{n}^{2+}$ ions are missing from the solution	
	B is not correct because the electrode is wrong	
	\boldsymbol{C} is not correct because Mn ²⁺ ions are missing from the solution	

Question Number	Correct Answer	Mark
2	The only correct answer is C	(1)
	A is not correct because the oxidation number of Cr is $+$ 3 and Mn is $+$ 2	
	B is not correct because the oxidation number of Cr is $+$ 6 and Ti is $+$ 3	
	$m{D}$ is not correct because the oxidation number of Cr is + 6 and Mn is + 7	

Question Number	Correct Answer	Mark
3	The only correct answer is A	(1)
	B is not correct because the oxidation number should be $+3 - 2 = +1$	
	$m{c}$ is not correct because the oxidation number should be +3 -2 = +1	
	D is not correct because the oxidation number should be $+3 - 2 = +1$	

Question Number	Correct Answer	Mark
4(a)	The only correct answer is A	(1)
	B is not correct because the complex is linear	
	C is not correct because the complex is square planar	
	D is not correct because the complex is octahedral	

Question Number	Correct Answer	Mark
4(b)	The only correct answer is B	(1)
	A is not correct because the oxidation number of the metal is $+3$	
	$m{c}$ is not correct because the oxidation number of the metal is +2	
	D is not correct because the oxidation number of the metal is +4	

Question Number	Correct Answer	Mark
5(a)	The only correct answer is C	(1)
	A is not correct because it is not -4/2	
	B is not correct because it is not -4/2	
	D is not correct because it is not -4/2	

Question Number	Correct Answer	Mark
5(b)	The only correct answer is C	(1)
	A is not correct because incorrect number of Z ligands	
	B is not correct because incorrect number of Z ligands and incorrect charge	
	D is not correct because incorrect charge	

Question Number	Correct Answer	Mark
6(a)	The only correct answer is A	(1)
	B is not correct because although copper(I) oxide is reddish brown, it is an incorrect product	
	C is not correct because copper(II) oxide is black not brownand it is an incorrect product	
	D is not correct because zinc sulfate is white not brown	

Question Number	Correct Answer	Mark
6(b)	The only correct answer is B	(1)
	A is not correct because it is not a white solid	
	C is not correct because it is not a white solid	
	D is not correct because it is soluble	

Question Number	Correct Answer	Mark
7	The only correct answer is B	(1)
	A is not correct because it is not an addition reaction	
	C is not correct because not it is not a nucleophilic or addition reaction	
	D is not correct because it is not a nucleophilic reaction	

Question Number	Correct Answer	Mark
8(a)	The only correct answer is D	(1)
	A is not correct because this is the wrong product	
	B is not correct because this is the wrong product	
	C is not correct because this is the wrong product	

Question Number	Correct Answer	Mark
8(b)	The only correct answer is C	(1)
	A is not correct because it is electrophilic not nucleophilic	
	B is not correct because electromeric effect outweighs inductive effect	
	D is not correct because it is a nucleophile not an electrophile	

Question Number	Correct Answer	Mark
9(a)	The only correct answer is A	(1)
	B is not correct because the locants are incorrect	
	C is not correct because there are no locants for the amine groups	
	D is not correct because there are no locants for the amine groups	

Question Number	Correct Answer	Mark
9(b)	The only correct answer is D	
	A is not correct because there is no carbonyl group	
	B is not correct because there is no carbonyl group	
	C is not correct because the amide groups are incorrect	

Question Number	Correct Answer	Mark
10(a)	The only correct answer is C	(1)
	A is not correct because it is not an acid	
	B is not correct because it is not an acid	
	D is not correct because it is optically active	

Question	Correct Answer	Mark
Number		
10(b)	The only correct answer is A	(1)
	B is not correct because Q forms phenol	
	C is not correct because R does not form sodium benzoate	
	D is not correct because S does not form sodium benzoate	

•	Correct Answer	Mark
Number		
11(a)	The only correct answer is B	(1)
	•	. ,
	A is not correct because it is a primary alcohol and should be a secondary alcohol	
	C is not correct because it is a primary alcohol and should be a secondary alcohol	
	D is not correct because it is a tertiary alcohol and should be a secondary alcohol	

Question Number	Correct Answer	Mark
11(b)	The only correct answer is B	(1)
	A is not correct because there would be no loss of carbon atom	
	$m{c}$ is not correct because there would be no loss of carbon atom	
	D is not correct because there would be no loss of carbon atom	

Question	Correct Answer	Mark
Number		
11(c)	The only correct answer is D	(1)
	•	
	A is not correct because this does not react with propanoic acid to give propanoyl chloride	
	B is not correct because this does not react with propanoic acid to give propanoyl chloride	
	C is not correct because this does not react with propanoic acid to give propanoyl chloride	

Question Number	Correct Answer	Mark
11(d)	The only correct answer is B	(1)
	A is not correct because it is not branched	
	C is not correct because it is not an amine	
	D is not correct because it is not an amine	

Section B

Question Number	Acceptable Answers		Reject	Mark
12(a)(i)	$(Al^{3+} 1s^2)2s^22p^6$	(1)		(2)
	(Fe ³⁺ 1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	(1)		
	ALLOW 2p _x ² 2p _y ² 2p _z ² / 3p _x ² 3p _y ² 3p _z ²			
	ALLOW 4s ⁰ included in Fe ³⁺ / any other 0 electrons	orbitals with		
	IGNORE 1s ² written again			

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers The increase in ionisation energy is balanced by an increase in hydration/lattice enthalpy ALLOW There is (only) a gradual/ small increase in (successive) ionisation energies for iron OR Iron has (several removable) d electrons of similar energies OR The 4s / 3d electrons / orbitals have similar energies (for iron) OR The energy difference / gap between 4s and 3d is small (for iron) OR	Just 'iron is a transition element'	(1)
	The ionisation energies are similar (for iron) IGNORE References to stability of half-full <i>d</i> -subshell / References to 3p electrons		

Question Number	Acceptable Answers	Reject	Mark
*12(b)	First mark - splitting (3)d orbitals /(3)d subshell are/is split (in energy by the ligands)	d orbital 'singular' is split	(4)
	ALLOW "d orbital splitting" (1)	d shell is split	
	IGNORE Just 'there is an energy difference between the (3) d orbitals'	Penalise omission of (3)d only in First mark	
	Second mark - absorption Electrons / photons absorb energy		
	ALLOW Electrons absorb (visible) light Frequencies / wavelengths (of visible light) are absorbed (1)		
	Third mark - promotion Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move (from lower) to higher energy (d) orbital(s) / levels		
	ALLOW d-d transitions occur / Electrons are excited to higher energy (d) orbital(s) / levels (1)		
	Fourth mark - colour Reflected / transmitted / remaining light is coloured / is in the visible region	Light emitted	
	ALLOW Complementary colour seen (The frequency of) reflected / transmitted / remaining light is seen (1)		
	IGNORE Reference to electrons relaxing / dropping to the ground state / any reference to aluminium		

Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	H ₂ O OH ₂ H ₂ O OH ₂ H ₂ O OH ₂		(2)
	3D octahedral shape Recognisable 3D octahedral shape		
	ALLOW Wedges/dots instead of dashed lines going into the page or other recognisable representations (1)		
	Note The word 'octahedral' does not rescue a poor diagram		
	Oxygen atoms 6 oxygen atoms joined to Fe (with or without lone pairs)	Negative charge on O	
	ALLOW O_2H Oxygens to Fe joined by single bonds / arrows for this mark (1)		
	IGNORE Omission of brackets and charge Incorrect charge Name of shape, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
12(c)(ii)	Any 2 points from 3		(2)
	First point Fe ³⁺ is (small and) highly charged/ Fe ³⁺ has a high charge density (1)		
	Second point Fe ³⁺ polarises / weakens / distorts the O-H bond OR Fe ³⁺ attracts the electrons / electron cloud / electron density in the OH bond		
	ALLOW Fe ³⁺ polarises / distorts the water molecule (1)		
	Third point (Solvent) water acts as a base OR (Solvent) water removes/ accepts a proton OR Water ligands donate a proton to (solvent) water	Water ligands act as a base Disproportionation	
	ALLOW $[Fe(H_2O)_6]^{3+}$ / the complex (ion) / water ligand acts as an acid (1) IGNORE		
	Just 'deprotonation' / just 'acid-base reaction' / alkali instead of base/ the complex is a proton donor		

Question Number	Acceptable Answers	Reject	Mark
12(d)	First mark – electron deficient (The aluminium atom in) AlCl ₃ has an empty (p) orbital (in the outer shell) / is electron deficient / has 6 electrons (in the outer shell) ALLOW 6 electrons shown around Al on a diagram (1) IGNORE Just 'AlCl ₃ has an incomplete (p) subhell'	Reference to 3d / 3s orbitals Reference to aluminium ion	(2)
	Second mark - bond It can accept a pair of / two electrons (from chlorine) OR Chlorine donates a pair of / 2 electrons (to AlCl ₃) OR It form a dative (covalent) bond (with chlorine) ALLOW Mention of chloride ion (1) IGNORE diagram	Reference to 'an electron' Chlorine molecule /Cl ₂	

Question Number	Acceptable Answers	Reject	Mark
12(e)(i)	Ligand exchange (reaction) OR Ligand substitution (reaction) OR Ligand replacement (reaction) Both words needed for the mark	Ligand change Ligand reaction Oxidation Reduction Redox	(1)

Question Number	Acceptable Answers	Reject	Mark
12(e)(ii)	Dot-and-cross diagram		(2)
	[ASAC X N:]		
	SACXN		
	ALLOW Any symbols for electrons Bonds shown with 2 electrons on each e.g. \underline{x} (1)		
	IGNORE Missing brackets and charge		
	Structure and charge		
	_s—_c <u>—_</u> n		
	OR		
	scn_		
	Bonds correct and negative charge shown or stated on correct atom		
	ALLOW This mark if bonds also shown in dot-and-cross diagram and negative charge on correct atom (1)		

Question Number	Acceptable Answers	Reject	Mark
12(e)(iii)	Dative covalent bond / bond from lone pair (of electrons) on sulfur/S and from nitrogen/N (to an empty orbital in Fe ³⁺) IGNORE Ionic bond		(1)

Question Number	Acceptable Answers	Reject	Mark
12(f)	Ionic equation with hydrochloric acid $Al(OH)_3 + 3H^+ \rightarrow Al^{3+} + 3H_2O$ $ALLOW$ $Al(OH)_3(H_2O)_3 + 3H^+ \rightarrow Al^{3+} + 6H_2O$ $Al(OH)_3(H_2O)_3 + 3H^+ \rightarrow [Al(H_2O)_6]^{3+}$ $Al(OH)_3 + 3H^+ + 3H_2O \rightarrow [Al(H_2O)_6]^{3+}$ $IGNORE$ $H^+ + OH^- \rightarrow H_2O$ (1)		(2)
	Ionic equation with sodium hydroxide $Al(OH)_3 + OH^- \rightarrow AlO_2^- + 2H_2O$ OR $Al(OH)_3 + OH^- \rightarrow [Al(OH)_4]^-$ ALLOW $Al(OH)_3(H_2O)_3 + OH^- \rightarrow [Al(OH)_4]^- + 3H_2O$ $Al(OH)_3(H_2O)_3 + OH^- \rightarrow [Al(OH)_4(H_2O)_2]^- + H_2O$ $Al(OH)_3 + 2OH^- \rightarrow [Al(OH)_5]^{2-}$ $Al(OH)_3(H_2O)_3 + 2OH^- \rightarrow [Al(OH)_5]^{2-} + 3H_2O$ $Al(OH)_3 + 3OH^- \rightarrow [Al(OH)_6]^{3-}$ $Al(OH)_3(H_2O)_3 + 3OH^- \rightarrow [Al(OH)_6]^{3-} + 3H_2O$ (1) If no other mark awarded, ALLOW 1 mark for two non-ionic / partially ionic equations e.g. $Al(OH)_3 + 3HCl \rightarrow AlCl_3 + 3H_2O$ and $Al(OH)_3 + NaOH \rightarrow NaAl(OH)_4$ IGNORE State symbols, even if incorrect / missing square brackets		

(Total for Question 12 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)*	The methods below illustrate the allocation of marks. However, the marks may be scored by any correct method		(6)
	Correct molecular formulae with some working involving C/CO ₂ H/H ₂ O and either O or use of 90 and subtraction of A_r s of C and / COOH scores full marks		
	Correct molecular formula with no working scores (1)		
	Method 1 mol CO ₂ = 3.30/44 = 0.075 (= mol C) (1	.)	
	mol $H_2O = 1.35/18 = 0.075$ (2)	L)	
	mol H = 2 x mol H_2O = 0.150 or ratio C : H = 1 : 2 (1)	.)	
	mass $O = 2.25 - ((12 \times 0.075) + (1 \times 0.150)) = 1.2 (g)$ (1	.)	
	mol O = 1.2/16 = 0.075	L)	
	Method 2 mass C = 3.30 x 12/44 = 0.90 (g) and mol C = 0.90/12 = 0.075	1)	
	mass H = $1.35 \times 2/18 = 0.15$ (g) and mol H = $0.15/1 = 0.15$	1)	
	mass $O = 2.25 - (0.90 + 0.15) = 1.2 (g)$ (1)	1)	
	mol O = 1.2/16 = 0.075	L)	
	Empirical and molecular formulae from Methods 1 and 2 Empirical formula = CH_2O	2	
	Relative empirical formula mass CH_2O = 12 + (2 x 1) + 16 = 30 So, molecular formula is $C_3H_6O_3$ (2) TE on incorrect moles but the ratio must be a whole number	1)	
	Method 3 mol T = 2.25/90 = 0.025 (1	.)	
	$mol CO_2 = 3.30/44 = 0.075 (= mol C)$ (1	.)	
	mol ratio T : C / $CO_2 = 1 : 3$ (1)	L)	
	mol $H_2O = 1.35/18 = 0.075$ and		
	mol H = 2 x mol H_2O = 0.150 or mol ratio C : H = 1 : 2 / 3 : 6 (1)	.)	
	90 - (36 + 6) = 48 and mol $0 = 48/16 = 3$	1)	
	So, molecular formula is $C_3H_6O_3$ (2)	1)	

Question Number	Acceptable Answers	Reject	Mark
13(a)(ii)	Any two of (1 mark for each structure) HOH HCCCC OH H H CCCC H H H H H H H H	Extra bonds once only e.g. –COOH ⁺ Negative charge or omission of charge once only	(2)
	ALLOW Structural formula i.e $COOH^+$, CH_3CHOH^+ , $CH_2OHCH_2^+$, $CH_3CH_2O^+$ ALLOW Structures in brackets with positive charge outside bracket IGNORE Position of positive charge $C_2H_5O^+$ Connectivity of the OH group	HCO ₂ ⁺	

Question	Acceptable Answers	Reject	Mark
Question Number 13(a)(iii)	Structure of compound T: HO C C C C OH (1) IGNORE Connectivity of the OH group Explanation: Use of peak ratio Use of peak ratio e.g. protons A and D are ratio 1: 1 (as they are single protons) and protons B and C are ratio 2: 2 (as there are two protons in each environment) ALLOW Ratio of protons /hydrogens is 1: 2: 2: 1 (1) Proton environments identified 4 proton environments clearly identified by symbols or words e.g. B C A HO C A HO C A B C (1) Note If compound T is identified as lactic acid, (1) mark awarded for identification of four proton environments only e.g. A B	Reject	3

Question	Acceptable Answers	Reject	Mark
Number 13(b)(i)*	Reaction 1 Reagents: CH ₃ COCl/ ethanoyl chloride and AlCl ₃ / aluminium choride / FeCl ₃ / iron(III) choride (1) Intermediate: stand alone or TE on acyl chloride used C—CH ₃ (1) Reaction 2 Reagents: conditional on a carbonyl compound HCN / hydrogen cyanide and KCN / potassium cyanide OR KCN / potassium cyanide and acid / H ₂ SO ₄ / sulfuric acid / H+ ions / hydrogen ions OR KCN / potassium cyanide and pH 8-10 /alkali		(5)
	ALLOW HCN / hydrogen cyanide and alkali / NaOH / sodium hydroxide / OH- / hydroxide ions ALLOW	Just 'CN ⁻ in alkali'	
	Sodium for potassium and vice versa (1)		
	Intermediate: stand alone OH CN CN (1) Reaction 3		
	Reagents: conditional on reaction with a CN group H ⁺ / hydrogen ions / (dilute) acid / name or formula of a strong acid	Additional reagent(s) e.g. KMnO ₄	
	ALLOW OH- / hydroxide ions / alkali / name or formula of an alkali and followed by / then acidification / H+ / hydrogen ions / (dilute) acid / name or formula of a strong acid (1)	Acid and alkali added together	
	IGNORE Concentration of acid or alkali		

Question Number	Acceptable Answers	Reject	Mark
13(b)(ii)	CH ₃ O CH ₃		(2)
	OR		
	CH ₃ O CH ₃		
	First mark		
	One correct ester linkage (as circled above) (1)		
	Second mark Conditional on one (or more) ester linkage Rest of structure correct with 2 repeat units and extension bonds	Os at both ends or no O at either	
	ALLOW C_6H_5 for benzene ring (1)	end loses second mark only	
	IGNORE Brackets and n / bond lengths and bond angles		

(Total for Question 13 = 18 marks)

Question Number	Acceptable Answers	Reject	Mark
14(a)(i)	$V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^{(-)}$ ALLOW Multiples Reversible arrow, provided equation written in the direction shown $V^{2+} + 2H_2O - 3e^{(-)} \rightarrow VO_2^+ + 4H^+$ IGNORE State symbols even if incorrect		(1)

Question Number	Acceptable Answers	Reject	Mark
14(a)(ii)	First mark – reducing agent Reducing agent: Fe ²⁺ ((aq)) / iron(II) (ions) This can be shown in an equation (1)		(3)
	Justification: Second mark – V(V) to V(IV) Fe^{2+}/Fe^{3+} electrode potential / SEP / E^{0} value is less positive / lower than the VO_2^{+}/VO^{2+} value / (+)0.77 < (+)1.00 (so V(V) is reduced to V(IV))		
	OR VO_2^+/VO^{2+} electrode potential / SEP / E^{\bullet} value is more positive / greater / higher than the Fe^{2+}/Fe^{3+} value / (+)1.00 > (+)0.77 (so V(V) is reduced to V(IV))		
	OR E^{e}_{cell} for the reaction between VO_{2}^{+} and Fe^{2+} is positive / (+)0.23 V / >0 (so V(V) is reduced to V(IV))	Incorrect value	
	ALLOW Any of the above 3 explanations if SO_2 , Zn , V^{3+} or V^{2+} chosen as reducing agent e.g. E^{\bullet} for SO_2/SO_4^{2-} = (+)0.83 or E^{\bullet} for Zn/Zn^{2+} =(+)1.76 or E^{\bullet} for V^{3+} / VO^{2+} =(+)0.66 or E^{\bullet} for V^{2+} / V^{3+} = (+)1.26 (so $V(V)$ is reduced to $V(IV)$)	Incorrect value	
	Third mark – V(IV) to V(III) Fe^{2+}/Fe^{3+} electrode potential / SEP / E° value is more positive / greater / higher than the VO ²⁺ /V ³⁺ value / (+)0.77 > (+)0.34 (so V(IV) is not reduced to V(III))		
	OR VO^{2+}/V^{3+} electrode potential / SEP / E^{\bullet} value is less positive / lower than the Fe ²⁺ /Fe ³⁺ value / (+)0.34 < (+)0.77 (so V(IV) is not reduced to V(III))		
	OR E^{Θ}_{cell} for the reaction between VO^{2+} and Fe^{2+} is negative / -0.43 V / <0 (so V(IV) is not reduced to V(III)) (1)	Incorrect value	

Question Number	Acceptable Answers	Reject	Mark
14(a)(iii)	First mark - equation $2V^{3+} + H_2O \rightarrow V^{2+} + VO^{2+} + 2H^+$ ALLOW Multiples Reversible arrow, provided reaction is writte in the direction shown (1) IGNORE State symbols even if incorrect Cancelled / crossed out electrons Second mark - E^{α}_{cell} value $E^{\alpha}_{cell} = -0.26 - 0.34 = -0.6(0)$ (V)		(3)
	NO TE on equation written in reverse (1) Third mark - feasibility E^{Θ}_{cell} is negative / <0 and so the disproportionation is not feasible / V^{2+} and V^{2+} will react to form V^{3+} ALLOW this mark even if an incorrect negative value is calculated for E^{Θ}_{cell} TE on a positive value for E^{Θ}_{cell} e.g. E^{Θ}_{cell} is positive / > and so the disproportionation is feasible (1)		

Question Number	Acceptable Answers		Reject	Mark
14(b)(i)	Correct answer, with or without working scores b marks	oth		(2)
	First mark - mol I ₂			
	Mol $S_2O_3^{2-}$ used = $24.20 \times 0.100/1000$ = $0.00242 / 2.42 \times 10^{-3}$			
	and			
	Mol $I_2 = 0.00242/2 = 0.00121 / 1.21 \times 10^{-3}$	(1)		
	Second mark – conc Br_2 (Mol $Br_2 = mol I_2 = 0.00121$) Conc $Br_2 = 0.00121 \times 1000/25.0 = 0.0484$ (mol			
	dm^{-3})	(1)		
	TE on mol $S_2O_3^{2-}$ and mol I_2			
	IGNORE SF except 1SF			

Question	Acceptable Answers	Reject	Mark
Number			
14(b)(ii)	Allow correct expressions if intermediate values not evaluated First mark – original mol Br_2 Original mol $Br_2 = 100.0 \times 0.0484/1000$ $= 0.00484 / 4.84 \times 10^{-3}$ (1) TE on conc Br_2 in (i)		(5)
	Second mark – mol I_2 Mol $S_2O_3^{2-}$ used = $16.80 \times 0.100/1000$ = $0.00168 / 1.68 \times 10^{-3}$		
	and Mol $I_2 = 0.00168/2 = 0.00084 / 8.4 \times 10^{-4}$ (1)		
	Third mark – mol Br ₂ reacted (mol Br ₂ in excess = mol $I_2 = 0.00084$) Mol Br ₂ reacted with $S_2O_3^{2^-}$ = 0.00484 – 0.00084 = 0.00400 /4.00 x 10^{-3} (1) TE on original mol Br ₂ and mol I_2 / Br ₂ in excess		
	Fourth mark – mol ratio Mole ratio $S_2O_3^{2^-}$: Br ₂ = 0.00100: 0.00400 = 1: 4 (1) TE on mol $S_2O_3^{2^-}$ and mol Br ₂ reacted		
	Fifth mark – equation – stand alone $S_2O_3^{2-} + 4Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 10H^+ + 8Br^-$		
	ALLOW 8HBr + 2Br ⁻ on RHS (1) No TE on incorrect mol ratio		
	IGNORE State symbols even if incorrect		

(Total for Question 14 = 14 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
15(a)(i)	C ₁₅ H ₁₂ O ₄ ALLOW symbols in any order, i.e. C ₁₅ O ₄ H ₁₂ , H ₁₂ O ₄ C ₁₅ , H ₁₂ C ₁₅ O ₄ , O ₄ H ₁₂ C ₁₅ , O ₄ C ₁₅ H ₁₂ IGNORE Any other formulae as working	Numbers written as superscripts e.g. C ¹⁵ H ¹² O ⁴	(1)

Question Number	Acceptable Answers	Reject	Mark
15(a)(ii)	ALLOW Any way of identifying the chiral carbon,	Any additional carbon atoms indicated	(1)
	including a circle, provided that it does not include any other carbon atoms		

Question	Acceptable Answers	Reject	Mark
Number 15(b)			(3)
	CH ₃ -SO ₂ CI		
	First mark – first curly arrow Curly arrow from on or within the circle to the S of †SO ₂ Cl ALLOW Curly arrow from anywhere within the hexagon ALLOW Curly arrow to any part of the †SO ₂ Cl ion, including the + charge (1)	Curly arrow on or outside the hexagon / incorrect electrophil e / missing +	
	Second mark - intermediate Intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe (1) Note Do not award this mark If benzene used instead of methylbenzene or if final product is not the 2-	Dotted bonds to H and SO ₂ Cl unless part of a 3D structure	
	isomer Third mark – second curly arrow Curly arrow from C-H bond to anywhere in the hexagon, reforming the delocalised structure (1) IGNORE Missing H ⁺ Involvement of any other ion / molecule in removal of H ⁺ Correct Kekule structures score full marks		

Question Number	Acceptable Answers	Reject	Mark
15(c)(i)	O C CH ₃	+ on wrong nitrogen atom	(1)
	N [†] N (Cl ⁻)	Covalent bond to Cl	
	OR		
	C C H ₃		
	OR		
	O C O C O C O		
	IGNORE Missing Cl- on the structures shown above		
	OR $ \begin{array}{c} O \\ C \\ O \\ C \\ N \\ N^{+} (Cl^{+}) \end{array} $ OR $ \begin{array}{c} O \\ C \\ C \\ O \\ C \\ N_{2}^{+} (Cl^{+}) \end{array} $	Cl	

Question Number	Acceptable Answers	Reject	Mark
15(c)(ii)	(alcoholic / ethanolic) ammonia / NH ₃ ALLOW Aqueous ammonia / NH ₃ (aq) IGNORE Concentration / heat		(1)

Question Number	Acceptable Answers	Reject	Mark
15(c)(iii)	CH₃OH	CH ₃ OH⁺	(1)
	OR		
	H——C——O——H	CH ₄ O⁺	
	OR		
	H H———————————————————————————————————		
	ALLOW CH₄O		

Question Number	Acceptable Answers	Reject	Mark
15(c)(iv)	OR O-Na+	Bond between N and Na or between O and Na Partial charges	(1)
	Both charges needed ALLOW Correct structure in brackets with charge outside and Na ⁺		

Question Number	Acceptable Answers	Reject	Mark
15(d)(i)	ALLOW displayed, structural or skeletal formula or any combination of these ALLOW -NH ₃ Cl as side group IGNORE Missing Cl ⁻ ions	Bond between N and Cl	(1)

Question Number	Acceptable Answers	Reject	Mark
15(d)(ii)	ALLOW No charges, provided there is no bond between 0 and Na ALLOW Displayed, structural or skeletal formula or any combination of these e.g. COONaCH ₂ CH(NH ₂)COONa IGNORE Missing Na ⁺ ions	Partial charges δ+ / δ-	(1)

Question Number	Acceptable Answers	Mark
I5(d)(iii)	OR OH OH OH HN OO HOO O	(2)
	OR H N O O O O O O O O O O O O O O O O O	
	Any one amide/peptide link shown e.g. /-CONH- Do not award this mark if other functional groups are joined directly to the amide (1)	
	Rest of structure correct ALLOW Displayed or structural formula or any combination of these (1) IGNORE	
	Bond angles and bond lengths	

Question Number	Acceptable Answers	Reject	Mark
15(d)(iv)	Methanol OR Any unambiguous formula e.g. CH ₃ OH / H C H H C O H H H If name and formula are given, both must be correct	CH₄O	(1)

Question Number	Acceptable Answers	Reject	Mark
15(e)(i)	LiAlH₄ / lithium tetrahydridoaluminate / lithium aluminium hydride (in dry ether)	LiAlH ₄ in water / aqueous solution	(1)
	OR	Just '[H] / H-'	
	NaBH ₄ / sodium tetrahydridoborate / sodium borohydride (in aqueous / alcohol solution)		
	IGNORE Lithal / heat		

Question Number	Acceptable Answers			Reject	Mark	
15(e)(ii)	Reagent Fehling's / Benedict's (solution and heat/boil)	Glucose Red / red- brown /brown / orange and precipitate	Sorbitol Stays blue / no change / no ppt	-	Observations not linked to a reagent Potassium dichromate(VI)	(3)
	Tollens' (reagent) / ammoniacal silver nitrate (and warm)	Silver mirror or grey /black /silver and precipitate	No change / no ppt			
	Brady's (reagent) / 2,4-dinitro- phenyl- hydrazine / 2,4-DNP(H)	Orange / yellow / red and precipitate	Stays orange /no change / no ppt			
	Reagent (1) Matching observation for glucose (1) Matching observation for sorbitol (1) ALLOW Correct formulae			(1)		
	ALLOW No reaction / no observation / nothing happens for sorbitol					
	IGNORE Sodium hydroxide in Tollens' reagent					
	No TE on inco	rrect reagent	:S			

Question Number	Acceptable Answers	Reject	Mark
15(e)(iii)	НООНОН		(1)
	OR HO OH OH OH		
	OR HO OH ALLOW Structural or displayed formulae or any combination of these IGNORE Bond angles and bond lengths OH connectivity		

(Total for Section C = 19 marks) TOTAL FOR PAPER = 90 MARKS